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We now have a good understanding of the exact spectrum of a class of quarter BPS

dyons in a variety of N = 4 supersymmetric string theories [1 – 18]. Since by going to

the appropriate region in the moduli space of these string theories and taking a decoupling

limit we can recover N = 4 supersymmetric gauge theories [19, 20], the spectrum of quarter

BPS dyons in N = 4 supersymmetric string theories provides us information about the

spectrum of quarter BPS dyons in N = 4 supersymmetric gauge theories. The latter,

in turn, can be related to the BPS spectrum of string junctions on a set of parallel D3

branes [21]. Thus the known dyon spectrum in N = 4 supersymmetric string theories gives

us prediction about the BPS spectrum of string junctions on a set of parallel D3-branes.

Our goal is to verify if this prediction is consistent with the known properties of string

junctions.

We shall work with heterotic string theory on T 4 × T 2 and focus on the four U(1)

gauge fields associated with the components of the metric and 2-form field along the T 2

directions. The electric charges associated with these gauge fields are the momenta n̂ and

n′ and the fundamental string winding charges −ŵ and −w′ along the two circles of T 2, and

the magnetic charges associated with these gauge fields are the H-monopole charges −Ŵ

and −W ′ and the Kaluza-Klein monopole charges N̂ and N ′ along the same two circles.

Following the notations and conventions of [18] we define the electric and magnetic charge

vectors as:

Q =




n̂

n′

ŵ

w′


 , P =




Ŵ

W ′

N̂

N ′


 . (1)

The complex structure and the (complexified) Kahler moduli of the torus T 2 are encoded

in a 4 × 4 matrix M satisfying

MT LM = L, MT = M , (2)

where

L =

(
0 I2

I2 0

)
. (3)

Ik is the k × k identity matrix. The other complex modulus relevant for our discussion is

the axion-dilaton modulus τ = a+ iS, where a is the field obtained by dualizing the 2-form

field in four dimensions and S = e−2φ, φ being the dilaton field.

The T-duality transformations associated with T 2 are generated by 4 × 4 matrices Ω

with integer entries and satisfying ΩLΩT = L. They act on the charges and the moduli as

Q → (ΩT )−1Q, P → (ΩT )−1P, M → ΩMΩT , τ → τ . (4)

Thus the combinations

Q2 = QT LQ, P 2 = P T LP, Q · P = QT LP (5)

are T-duality invariant. On the other hand the S-duality transformations are generated by

SL(2, Z) matrices

(
â b̂

ĉ d̂

)
with â, b̂, ĉ, d̂ ∈ Z, âd̂ − b̂ĉ = 1, and act on the charges and the
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Figure 1: The domains R and L.

moduli as

Q → âQ + b̂P, P → ĉQ + d̂P , τ →
âτ + b̂

ĉτ + d̂
, M → M . (6)

As was reviewed in [18], for all charge vectors (Q,P ) which are related to the charge

vectors

Q =




k3

k4

k5

−1


 , P =




l3
l4
l5
0


 , ki, li ∈ Z , g.c.d.(l3, l5) = 1 , (7)

by a T-duality transformation, we have a simple formula for the degeneracy (more precisely

the number of bosonic supermultiplets minus the number of fermionic supermultiplets) of

quarter BPS states:

d(Q,P ) = (−1)Q·P+1 g

(
1

2
Q2,

1

2
P 2, Q · P

)
, (8)

where g(m,n, p) are defined as the coefficients of Fourier expansion of a known function

1/Φ̃:
1

Φ̃(ρ̃, σ̃, ṽ)
=

∑

m,n,p∈zz
m≥−1,n≥−1

g(m,n, p) e2πi(meρ+neσ+pev) . (9)

In the particular theory under consideration, Φ̃ is the well known Igusa cusp form of weight

10 [22 – 25] on the moduli space of genus two Riemann surfaces, parametrized by the period

matrix

(
ρ̃ ṽ

ṽ σ̃

)
[1]. From (8), (9) we see that d(Q,P ) = 0 unless Q2 ≥ −2 and P 2 ≥ −2.

The formula for the degeneracy given above is not complete unless we specify the

region of the moduli space in which the formula is valid. As we vary the asymptotic moduli

the degeneracy can actually jump across walls of marginal stability, — codimension one

subspaces of the moduli space on which the original quarter BPS dyon can decay into a

pair of half-BPS dyons [13, 14, 16, 17, 26, 27]. As has been reviewed in detail in [18], a
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very useful way to label a given wall of marginal stability is to specify the relation between

the charges of the decay products and the charges of the original state. In particular

the possible decays of a quarter BPS state with charge (Q,P ) are into half BPS states

carrying charges (adQ−abP, cdQ−cbP ) and (−bcQ+abP,−cdQ+adP ) with a, b, c, d ∈ Z,

ad − bc = 1. For fixed values of the moduli M , the corresponding wall is either a circle in

the τ plane intersecting the real axis at a/c and b/d, or – for c = 0 or d = 0 – a straight

line passing through b/d or a/c. The radii of the circles and the slopes of the straight

lines depend on Q, P and the other moduli M . The degeneracy formula given in (8), (9)

is valid inside two separate domains bounded by walls of marginal stability. The first

domain, called R, is bounded by three different walls, — a straight line through 0, a circle

connecting 0 and 1 and a straight line through 1 (see figure 1). From the decay rules given

above it is clear that these three domain walls correspond to the decays:

(Q,P ) → (Q, 0)+(0, P ), (Q,P ) → (0,−Q+P )+(Q,Q), (Q,P ) → (P,P )+(Q−P, 0) . (10)

The other domain L inside which the degeneracy formula is valid is bounded by a straight

line through 0, a circle through −1 to 0 and a straight line through −1. By following the

same rules we see that these walls correspond to the possible decays:

(Q,P ) → (Q, 0)+(0, P ), (Q,P ) → (0, Q+P )+(Q,−Q), (Q,P ) → (−P,P )+(Q+P, 0) .

(11)

Even though the degeneracy formula (8) hold in both domains R and L, there is a

subtle difference between the ways we extract g(m,n, p) from (9) in the two cases. When

we are computing the formula in the domain R, we need to expand 1/Φ̃ in such a way

that for a fixed m,n, the sum over p is bounded from above. On the other hand inside the

domain L we have to expand 1/Φ̃ so that for fixed m,n the sum over p is bounded from

below.

We shall first focus on the degeneracy of states with Q2 = P 2 = −2 and later consider

states related to these by S-duality transformation. For this we only need to examine terms

in 1/Φ̃ whose σ̃, ρ̃ dependence is of the form e−2πieρ−2πieσ. The relevant part of 1/Φ̃ is

1

Φ̃
≃ e−2πieρ−2πieσ e−2πiev

(
1 − e−2πiev

)2 . (12)

According to the rule given above we need to expand this in power of e−2πiev for calculating

the degeneracy in the domain R. This gives, in the domain R,

d(Q,P ) =

{
0 for Q2 = P 2 = −2, Q · P ≥ 0

j(−1)j−1 for Q2 = P 2 = −2, Q · P = −j, j > 0
. (13)

On the other hand in the domain L we have to expand 1/Φ̃ in powers of e2πiev by expressing

the ṽ dependent factor as e2πiev/(1 − e2πiev)2. This gives, in the domain L,

d(Q,P ) =

{
0 for Q2 = P 2 = −2, Q · P ≤ 0

j(−1)j+1 for Q2 = P 2 = −2, Q · P = j, j > 0
. (14)
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Let us now focus on a particular state carrying charge vectors

Q0 =




0

1

0

−1


 , P0 =




−1

1

1

0


 . (15)

This is of the form given in (7), and has

Q2
0 = −2, P 2

0 = −2, Q0 · P0 = −1 . (16)

Thus according to (13), (14), this state will have degeneracy 1 in the domain R and

vanishing degeneracy in the domain L. In other words, the state will cease to exist as we

move from the domain R to the domain L crossing the wall separating the two domains.

In the τ plane this wall is a straight line through 0.

We shall now examine the fate of the state in various other domains. This is done

by noting that the degeneracies in the other domains may be calculated by mapping them

to the domain R using an S-duality transformation and then applying the degeneracy

formula (8), (9) in the domain R [13]. Let us consider a domain R̃ that is mapped to

the domain R via an S-duality transformation matrix

(
â b̂

ĉ d̂

)
. This will map the charge

vector (Q0, P0) to (Q′
0, P

′
0) given by

Q′
0 = âQ0 + b̂P0 =




−b̂

â + b̂

b̂

−â


 , P ′

0 = ĉQ0 + d̂P0 =




−d̂

ĉ + d̂

d̂

−ĉ


 . (17)

Thus d(Q0, P0) in the domain R̃ is equal to d(Q′
0, P

′
0) in the domain R. Although the

charge vectors (Q′
0, P

′
0) do not have the form given in (7), they can be expressed as

Q′
0 = (ΩT )−1Q′′

0, P ′
0 = (ΩT )−1P ′′

0 , (18)

where

Q′′
0 =




0

â2 + âb̂ + b̂2

âĉ + b̂ĉ + b̂d̂

−1


 , P ′′

0 =




−1

âĉ + âd̂ + b̂d̂

ĉ2 + ĉd̂ + d̂2

0


 , ΩT =




â 0 0 −b̂

0 â b̂ 0

0 ĉ d̂ 0

−ĉ 0 0 d̂


 .

(19)

Since (Q′′
0 , P ′′

0 ) have the form (7), and Ω denotes a T-duality transformation, we conclude

that our degeneracy formula (8), (9) holds for the charge vectors (17). Thus in order to

get non-vanishing d(Q′
0, P

′
0) we must have (Q′

0)
2 ≥ −2, (P ′

0)
2 ≥ −2. Using (17) these

conditions translate to

â2 + b̂2 + âb̂ ≤ 1, ĉ2 + d̂2 + ĉd̂ ≤ 1 . (20)

Since the left hand sides of both equations are positive definite for âd̂ − b̂ĉ = 1, the above

equations give strong constraint on â, b̂, ĉ and d̂. In particular for integer â, b̂, ĉ, d̂ both
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bounds must be saturated. Thus we have (Q′
0)

2 = (P ′
0)

2 = −2. Eq.(13) now tells us that

unless Q′
0 · P

′
0 ≤ −1 the degeneracy vanishes in the domain R. This gives rise to one more

inequality

2(âĉ + b̂d̂) + âd̂ + b̂ĉ ≥ 1 . (21)

We can find all integer solutions to (20), (21) subject to the restriction âd̂− b̂ĉ = 1. Up to

an overall sign that does not affect the mapping between the domains in the τ plane, we

get the following solutions for

(
â b̂

ĉ d̂

)
:

(
1 −1

1 0

)
,

(
1 0

0 1

)
,

(
0 1

−1 1

)
. (22)

This gives the set of all â, b̂, ĉ and d̂ for which d(Q′
0, P

′
0) is non-zero inside R and hence

d(Q0, P0) is non-zero inside R̃. Thus the set of all domains in which d(Q0, P0) is non-zero is

obtained by the image of R (for charge vector (Q′
0, P

′
0)) under an S-duality transformation

by the inverse of

(
â b̂

ĉ d̂

)
. Now one can easily verify that each of the S-duality transfor-

mations given in (22) maps the domain R to itself,1 – this is best seen by noting that each

of these transformations permutes the vertices 0, 1 and ∞ of R. Thus any other domain R̃

is mapped to R via an S-duality transformation outside the set (22), and hence d(Q0, P0)

must vanish in the domain R̃. This leads to the conclusion that d(Q0, P0) vanishes in all

domains outside R.

We shall now try to verify this prediction by working near a point in the moduli space

where there is an enhanced SU(3) gauge symmetry. This is achieved by taking the matrix

valued scalar field M to be of the form

M =




4/3 2/3 −1/3 2/3

2/3 4/3 −2/3 1/3

−1/3 −2/3 4/3 −2/3

2/3 1/3 −2/3 4/3


 . (23)

In this case one finds that the BPS mass of a purely electric state vanishes for the charge

vectors

α =




1

−1

−1

0


 , β =




0

1

0

−1


 , γ =




1

0

−1

−1


 . (24)

Indeed the vectors ±α, ±β and ±γ = ±(α + β) are eigenvectors of (M + L) with zero

eigenvalue and satisfy α2 = β2 = γ2 = −1. As a result electrically charged states with

these charge vectors give the six massless electrically charged states which are necessary

for getting the full set of SU(3) gauge fields. If we adjust the moduli M to be slightly

away from the one given in (23) then the SU(3) gauge symmetry is spontaneously broken

1More precisely, it maps the domain R for the charge vector (Q0, P0) to the domain R for the charge

vector (Q′
0, P

′
0).
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to U(1) × U(1) and the charged gauge fields become massive, but remain light compared

to the string scale.

Besides the half-BPS massive gauge fields, and the half-BPS dyons related to these

by S-duality transformation, the spontaneously broken SU(3) gauge theory also contains

quarter BPS dyons carrying electric and magnetic charges of the form [21]

Q = pα + qβ, P = rα + sβ, p, q, r, s ∈ Z , (25)

in specific domains in the moduli space depending on the values of p, q, r, s. These must

represent some states in the spectrum of quarter BPS dyons in string theory.2 Conversely

every BPS state in string theory, carrying charge vectors of the form (pα + qβ, rα + sβ),

becomes light compared to the string scale in the region of the moduli space we are consid-

ering, and hence they must have a realization in gauge theory. In particular since (Q0, P0)

defined in (15) has the form

Q0 = β, P0 = −α , (26)

it must have a realization in SU(3) gauge theory.

A simple realization of quarter BPS dyons in SU(3) gauge theory is as a 3-string

junction [28, 29] on a system of three closeby parallel D3-branes [21]. This system has

U(1)× spontaneously broken SU(3) gauge theory as its low energy limit. An (m,n) string

ending on a D3-brane carries an electric charge m and magnetic charge n under the U(1)

gauge field living on the D3-brane. Thus if we have a configuration where an (m1, n1)

string ends on the first D3-brane, an (m2, n2) string ends on the second D3-brane and an

(m3, n3) string ends on the third D3-brane, with the three strings meeting at a 3-point

junction, then the system will be said to carry electric and magnetic charge vectors

Q̃ =




m1

m2

m3


 , P̃ =




n1

n2

n3


 . (27)

Charge conservation at the three string junction requires
∑

i mi and
∑

i ni to vanish. Thus

although the gauge theory on the D3-brane is U(3), the state described above carries only

an SU(3) charge. This allows us to compare a BPS state of the configuration described

above with that of the SU(3) gauge theory that arises as the low energy limit of heteroric

string theory on T 4 × T 2. For this we first need to learn how to translate a charge vector

of the type given in (27) to the one given in (1). We do this by comparing the charges

carried by the massive gauge fields. On the configuration of three D3-branes, the massive

gauge fields arise from (1,0) string stretching from one D3-brane to another. Thus in the

convention described above, the electric charges carried by these gauge fields take the form

±α̃, ±β̃ and ±γ̃ = ±(α̃ + β̃) with

α̃ =




1

−1

0


 , β̃ =




0

1

−1


 , γ̃ =




1

0

−1


 . (28)

2Note that the gauge theory limit can be taken by adjusting the moduli M and is insensitive to τ = a+iS.

Thus even after taking the gauge theory limit we can explore all the different domains separated by walls

of marginal stability by varying τ .
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1
2

3(0,�1) (�1,0)(1,1)
Figure 2: The three string junction containing a (0,−1) string, a (1,1) string and a (−1, 0) string

ending on D3 branes 1, 2 and 3 respectively.

On the other hand in heterotic string theory on T 4 × T 2, the SU(3) gauge fields carry

electric charge vectors ±α, ±β and ±γ given in (24). Thus we now have a correspondence

between the charge vectors in the D3-brane system to ones in heterotic string theory for

states which are charged only under the SU(3) subgroups in both theories. In particular a

state in the heterotic string theory carrying charges (pα + qβ, rα + sβ) will correspond to

a three string junction carrying charges

Q̃ = pα̃ + qβ̃, P̃ = rα̃ + sβ̃ . (29)

Let us now consider a three string junction in which a (0,−1) string ends on the first

D3-brane, a (1, 1) string ends on the second D3-brane and a (−1, 0) string ends on the

third D3-brane (see figure 2). This corresponds to the choice

Q̃ =




0

1

−1


 = β̃, P̃ =




−1

1

0


 = −α̃ . (30)

Thus in heterotic string theory on T 4 × T 2, the charge vectors carried by this state will be

(β,−α) = (Q0, P0) with Q0, P0 given in (15).

We shall now examine the domain in which the three string junction exists and compare

the result with the one obtained from the dyon degeneracy formula in N = 4 supersym-

metric string theory. The 3-string junction can become marginally unstable in one of three

ways, corresponding to shrinking one of the three strings to zero size [21] (see figure 3).

Consider first the case where the (0,−1) string ending on the first D3-brane shrinks to

zero size. In this case the resulting configuration becomes identical to that of a (1,1) string

going from the first to the second brane and a (−1, 0) string going from the first to the

third brane. According to our convention the former has charge vectors

Q̃1 =




−1

1

0


 = P̃ , P̃1 =




−1

1

0


 = P̃ , (31)
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1 32
(�1,0)(1,1) 1 3

2(0,�1) (�1,0)(a) (b)
1 3

2
(0,�1) (1,1)(c)

Figure 3: Marginally stable three string junctions. In (a) the string ending on the first D3 brane

shrinks to zero size, in (b) the string ending on the second D3-brane shrinks to zero size, and in (c)

the string ending on the third D3-brane shrinks to zero size.

whereas the latter has a charge vector

Q̃2 =




1

0

−1


 = Q̃ − P̃ , P̃2 =




0

0

0


 = 0 . (32)

Thus this particular wall of marginal stability corresponds to the decay

(Q̃, P̃ ) → (P̃ , P̃ ) + (Q̃ − P̃ , 0) . (33)

Proceeding this way we see that the second wall of marginal stability, corresponding to

shrinking of the (1,1) string ending on the second D3-brane to zero size, induces decay into

an (0,−1) string going from the second to the first brane and a (−1, 0) string going from

the second to the third branes. This gives

(Q̃, P̃ ) → (0, P̃ ) + (Q̃, 0) . (34)

Finally the third wall of marginal stability, corresponding to the shrinking of the (−1, 0)

string ending on the third brane to zero size, induces decay into a (0,−1) string going from

the third to the first brane and a (1, 1) string going from the third to the second brane.

This gives

(Q̃, P̃ ) → (0, P̃ − Q̃) + (Q̃, Q̃) . (35)

Eqs.(33), (34) and (35) give the walls of marginal stability bordering the domain in

which the three string junction under consideration exists. From (10) we see that these

are precisely the walls which border the domain R. Thus we see that the particular three

string junction under consideration exists in the domain R, — exactly as predicted by the

dyon degeneracy formula in string theory. The degeneracy formula in fact goes further and

predicts that these states will have degeneracy 1. This cannot be verified directly using

the three string junction picture since quantization of such a configuration is difficult, but

has been verified by working in the gauge theory description of these states [30 – 32].

We can also consider a slightly different three string junction in which a (0, 1) string

ends on the first D3-brane, a (1,−1) string ends on the second D3-brane and a (−1, 0) string

– 8 –
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ends on the third D3-brane. Following the same procedure as in the previous case one finds

that the corresponding state in heterotic string theory on T 4 × T 2 has Q2 = P 2 = −2,

Q ·P = 1. Thus this state exists with degeneracy 1 in the domain L. An analysis identical

to the one described earlier shows that in the heterotic string theory description the state

ceases to exist as we cross any of the walls of marginal stability bordering the domain

L. This leads to a definite prediction for the domain in the moduli space of D3 brane

configurations in which the three string junction exists. This can be verified explicitly in

the same way as in the previous case.

Let us now consider the case of a more general three string junction configuration where

an (m1, n1) string ends on the first D3-brane, an (m2, n2) string ends on the second D3-

brane and an (m3, n3) brane ends on the third D3-brane. If (m1n3−m3n1) = −1 then this

configuration may be obtained from the one discussed earlier, — containing a (0,−1), (1, 1)

and (−1, 0) strings, — by an S-duality transformation by the matrix

(
−m3 −m1

−n3 −n1

)
. Thus

the domain in which it exists can be determined, — both in the string junction description

and in the description as a dyon in the N = 4 supersymmetric heterotic string theory,

— by an S-duality transformation of the domain in which the configuration of (0,−1),

(1, 1) and (−1, 0) string exists. Our earlier analysis for the latter configuration now implies

that the results in the two descriptions would also agree for the more general configuration

involving (m1, n1), (m2, n2) and (m3, n3) strings as long as (m1n3−m3n1) = −1. Similarly

if (m1n3 − m3n1) = 1 then we can relate this to the configuration of (0, 1), (1,−1) and

(−1, 0) string via an S-duality transformation

(
−m3 m1

−n3 n1

)
, and the agreement between

the results based on dyon spectrum in string theory and three string junction would follow

as a consequence of a similar agreement for the (0, 1), (1,−1) and (−1, 0) configuration.

What about the case when (m1n3 − m3n1) 6= ±1? It is instructive to see what kind

of charge vectors the general (m1, n1), (m2, n2) = (−m1 − m3,−n1 − n3), (m3, n3) string

configurtion corresponds to in heterotic string theory. In the string junction description

the charge vectors are

Q̃ =




m1

−m1 − m3

m3


 = m1α̃ − m3β̃, P̃ =




n1

−n1 − n3

n3


 = n1α̃ − n3β̃ . (36)

Thus in the heterotic string theory on T 4 ×T 2 this would correspond to the charge vectors

Q = m1α − m3β =




m1

−m1 − m3

−m1

m3


 , P = n1α − n3β =




n1

−n1 − n3

−n1

n3


 . (37)

In this case it is easy to see that

g.c.d.(QiPj − QjPi; i, j = 1, 2, 3, 4) = |m1n3 − m3n1| . (38)

For |m1n3−m3n1| 6= 1 these states are outside the duality orbit of the state (7) [33, 14, 18,

34]. Hence the currently known formula for degeneracy of dyons in N = 4 supersymmtric

– 9 –
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string theories do not have any information about the spectrum of these states. Indeed,

since one can now construct a non-premitive lattice vector from an integer linear combina-

tion of Q and P , even the structure of the marginal stability walls change, – in the decay

(Q,P ) into (adQ − abP, cdQ− cbP ) and (−bcQ + abP,−cdQ + adP ) the coefficient a, b, c,

d need not all be integers any more.

Different aspects of the relation between dyon spectrum in supersymmetric gauge the-

ories and string theories have been discussed in [35].
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